高中数学186个解题技巧
1、因式分解
根据项数选择方法和按照一般步骤,是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式-选择用公式-十字相乘法-分组分解法-拆项添项法。

2、换元法
解某些复杂的特型方程要用到“换元法”,换元法解方程的一般步骤是:设元-换元-解元-还元。
3、待定系数法
待定系数法是在已知对象形式的条件下求对象的一种方法,适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写。
4、一元二次方程根的讨论
一元二次方程根的符号问题或m型问题,可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。
“图像法”解决一元二次方程根的问题的一般思路是:题意-二次函数图像-不等式组(包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号)。
5、较值型应用题的解法
应用题中,涉及“一个变量取什么值时另一个变量取得较大值或较小值”的问题,是较值型应用题。解决较值型应用题的基本思路是函数思想法,其解题步骤是:设变量-列函数-求较值-写结论。
6、 函数奇偶性
对于属于R上的奇函数有f(0)=0;对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项;奇偶性作用不大,一般用于选择填空。
7、两直线垂直或平行解题方法
已知直线L1:a1x+b1y+c1=0,直线L2:a2x+b2y+c2=0,若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合),这两个公式避免了斜率是否存在的麻烦。
8、椭圆中焦点三角形面积公式
S=b?tan(A/2)在双曲线中:S=b?/tan(A/2),说明:适用于焦点在x轴,且标准的圆锥曲线。A为两焦半径夹角。
9、向量简洁公式
向量a在向量b上的射影是:〔向量a×向量b的数量积〕/[向量b的模]。记忆方法:在哪投影除以哪个的模。
10、圆锥曲线问题
圆锥曲线的题目选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。